

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # O-RAN-SC Non-RealTime RIC O-RU O-DU Link Failure Consumer

This consumer creates a job of type STD_Fault_Messages in the Information Coordinator Service (ICS). When it recieves messages, it checks if they are link failure messages. If they are, it checks if the event severity is other than normal. If so, it looks up the O-DU ID mapped to the O-RU where the message originates from and sends a configuration message to the O-DU through SDNC. If the event severity is normal, then it logs, on Debug level, that the link failure has been cleared.

Configuration

The consumer takes a number of environment variables, described below, as configuration.

>- CONSUMER_HOST Required. The host for the consumer. Example: http://mrproducer
>- CONSUMER_PORT Required. The port for the consumer. Example: 8095
>- CONSUMER_CERT_PATH Required. The path to the certificate to use for https. Defaults to security/producer.crt
>- CONSUMER_KEY_PATH Required. The path to the key to the certificate to use for https. Defaults to security/producer.key
>- INFO_COORD_ADDR Optional. The address of the Information Coordinator. Defaults to http://enrichmentservice:8083.
>- SDNR_ADDR Optional. The address for SDNR. Defaults to http://localhost:3904.
>- SDNR_USER Optional. The user for the SDNR. Defaults to admin.
>- SDNR_PASSWORD Optional. The password for the SDNR user. Defaults to Kp8bJ4SXszM0WXlhak3eHlcse2gAw84vaoGGmJvUy2U.
>- ORU_TO_ODU_MAP_FILE Optional. The file containing the mapping from O-RU ID to O-DU ID. Defaults to o-ru-to-o-du-map.csv.
>- LOG_LEVEL Optional. The log level, which can be Error, Warn, Info or Debug. Defaults to Info.

Any of the addresses used by this product can be configured to use https, by specifying it as the scheme of the address URI. The client will not use server certificate verification. The consumer’s own callback will only listen to the scheme configured in the scheme of the consumer host address.

The configured public key and cerificate shall be PEM-encoded. A self signed certificate and key are provided in the security folder of the project. These files should be replaced for production. To generate a self signed key and certificate, use the example code below:

openssl req -new -x509 -sha256 -key server.key -out server.crt -days 3650

Functionality

The creation of the job is not done when the consumer is started. Instead the consumer provides a REST API where it can be started and stopped, described below. The API is available on the host and port configured for the consumer

>- /admin/start Creates the job in ICS.
>- /admin/stop Deletes the job in ICS.

If the consumer is shut down with a SIGTERM, it will also delete the job before exiting.

There is also a status call provided in the REST API. This will return the running status of the consumer as JSON.
>- /status {“status”: “started/stopped”}

Development

To make it easy to test during development of the consumer, three stubs are provided in the stub folder.

A producer stub, under the producer folder, that stubs the producer and pushes an array with one message with eventSeverity alternating between NORMAL and CRITICAL. The stub does not start to send messages until it recieves a create job call from the ICS stub. When a delete job call comes from the ICS stub it stops sending messages. To build and start the stub, do the following:
>1. cd stub/producer
>2. go build
>3. ./producer

An ICS stub, under the ics folder, that listens for create and delete job calls from the consumer. When it gets a call it calls the producer stub with the correct create or delete call and the provided job ID. By default, it listens to the port 8083, but his can be overridden by passing a -port [PORT] flag when starting the stub. To build and start the stub, do the following:
>1. cd stub/ics
>2. go build
>3. ./ics

An SNDR stub, under the sdnr folder, that at startup will listen for REST calls and print the body of them. By default, it listens to the port 3904, but his can be overridden by passing a -port [PORT] flag when starting the stub. To build and start the stub, do the following:
>1. cd stub/sdnr
>2. go build
>3. ./sdnr

Mocks needed for unit tests have been generated using github.com/stretchr/testify/mock and are checked in under the mocks folder. Note! Keep in mind that if any of the mocked interfaces change, a new mock for that interface must be generated and checked in.

License

Copyright (C) 2021 Nordix Foundation.
Licensed under the Apache License, Version 2.0 (the “License”)
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

For more information about license please see the [LICENSE](LICENSE.txt) file for details.

 # Use case Link Failure

General

The Link Failure use case test provides a python script that regularly polls DMaaP Message Router (MR) for “CUS Link Failure”
messages.

When such a message appears with the “eventSeverity” set to anything but “NORMAL”, a configuration change message with the
“administrative-state” set to “UNLOCKED” will be sent to the O-DU mapped to the O-RU that sent the alarm.

When such a message appears with the “eventSeverity” set to “NORMAL” a printout will be made to signal that the
alarm has been cleared, provided that the verbose option has been used when the test was started.

Prerequisits

To run this script Python3 needs to be installed. To install the script’s dependencies, run the following command from
the app folder: pip install -r requirements.txt

Also, the MR needs to be up and running with a topic created for the alarms and there must be an endpoint for the
configuration change event that will accept these.

The host names and the ports to the MR and SDNR services can be provided when the container is started if the default
values are not correct. The topic can also be changed.

The mapping from O-RU ID to O-DU ID is specified in the file o-ru-to-o-du-map.txt. This can be replaced by providing
a different file when starting the application.

For convenience, a message generator and a change event endpoint simulator are provided.

How to run from command line

Go to the app/ folder and run python3 main.py. The script will start and run until stopped. Use the -h option to
see the options available for the script.

How to run in Docker

Go to the app/ folder and run docker build -t oru-app ..

The container must be connected to the same network as the MR and SDNR are running in. Some of the parameters to the application
can be provided with the -e PARAM_NAME=PARAM_VALUE notation. Start the container by using the command, with available params listed:

docker run –network [NETWORK NAME] –name oru-app -e VERBOSE=on -e MR-HOST=[HOST NAME OF MR] -e MR-PORT=[PORT OF MR] -e SDNR-HOST=[HOST NAME OF SDNR] -e SDNR-PORT=[PORT OF SDNR] oru-app.

To build the image for the message generator, run the following command from the simulators folder:
docker build -f Dockerfile-message-generator -t message-generator .

The message generator’s container must be connected to the same network as the other components are running in. Some of the
parameters to the application can be provided with the -e PARAM_NAME=PARAM_VALUE notation. Start the container by
using the command, with available params listed:

docker run –network [NETWORK NAME] –name message-generator -e MR-HOST=[HOST NAME OF MR] -e MR-PORT=[PORT OF MR] message-generator.

To build the image for the SDNR simulator, run the following command from the simulators folder:
docker build -f Dockerfile-sdnr-sim -t sdnr-simulator .

The SDNR simulator’s container must be connected to the same network as the the other components are running in. Some of the
parameters to the application can be provided with the -e PARAM_NAME=PARAM_VALUE notation. Start the container by
using the command, with available params listed:

docker run –network [NETWORK NAME] –name sdnr-simulator -e MR-HOST=[HOST NAME OF MR] -e MR-PORT=[PORT OF MR] sdnr-simulator.

Use docker-compose

Go to the docker-compose/ folder and run bash start.sh.

This scripts will start up four components:
dmaap-mr
oru-app
sdnr-simulator
message-generator

License

Copyright (C) 2021 Nordix Foundation.
Licensed under the Apache License, Version 2.0 (the “License”)
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

For more information about license please see the [LICENSE](LICENSE.txt) file for details.

 ## Run script

bash start.sh

This scripts will build images and start up four components in docker enviroment by applying docker-compose yaml file:
- dmaap-mr
- oru-app
- sdnr-simulator
- message-generator

License

Copyright (C) 2021 Nordix Foundation.
Licensed under the Apache License, Version 2.0 (the “License”)
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 This docker-compose will create a control loop that will deploy all components of the closed loop recovery use case into a k8s cluster using the k8s participant from CLAMP in ONAP.

It will also bring up the chartmuseum registry that will be used by helm when deploying the charts.
The script named chartmuseum_init.sh will push all the charts into the chartmuseum.
This script is mounted into the k8s-participant docker container but can also be run locally.

Depending on the type of k8s cluster and the operating system being used, different settings might need to be done for the k8s-participant docker container. For example, in case of minikube, the following should be added under k8s-participant (assuming that kube-config file of the host machine has been copied into the config directory):

	volumes:
	
	./config/kube-config:/home/policy/.kube/config:ro

	~/.minikube/profiles/minikube:/home/policy/.minikube/profiles/minikube

This will mount the kube-config file into the k8s-participant docker container so that it is able to deploy services into the minikube instance running in the host machine. The minikube directory contains the client-certificate and client-key.

Since the kube-api server is running in the host machine instead of the k8s-participant docker container, some extra steps are needed:

	Linux

Run the following command in the host machine so that the localhost referred to in the kube-config file points to the host machine:

iptables -A INPUT -i docker0 -j ACCEPT

	Mac

Mac OS does not seem to have the iptables command. However, in order to refer to the host machine from inside the docker container, one may use “host.docker.internal” but this gives rise to another problem:

Unable to connect to the server: x509: certificate is valid for minikubeCA, control-plane.minikube.internal, kubernetes.default.svc.cluster.local, kubernetes.default.svc, kubernetes.default, kubernetes, localhost, not host.docker.internal

As a workaround, the TLS can be disabled. So, the following part should be modified in the kube-config file:

	
	cluster:
	server: https://host.docker.internal:<PORT>
insecure-skip-tls-verify: true

License

Copyright (C) 2021 Nordix Foundation.
Licensed under the Apache License, Version 2.0 (the “License”)
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 ## Run script

bash start.sh

This scripts will build images and start up four components in k8s enviroment by applying helm chart files:
- dmaap-mr
- oru-app
- sdnr-simulator
- message-generator

License

Copyright (C) 2021 Nordix Foundation.
Licensed under the Apache License, Version 2.0 (the “License”)
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 ## Run script

bash start.sh

This scripts will build images and start up four components in k8s enviroment by applying k8s yaml file:
- dmaap-mr
- oru-app
- sdnr-simulator
- message-generator

License

Copyright (C) 2021 Nordix Foundation.
Licensed under the Apache License, Version 2.0 (the “License”)
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/minus.png

_static/plus.png

